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Density profile in convection of water near 4 °C
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Data on cylindrical free convection in water near 4°C are compared with a theory previously
developed for a fluid having a density maximum. The main features of experimental curves are well
reproduced by theory and it is shown that the typical temperature arrests observed in free cooling of wa-
ter are due to the particular profile of the density which propagates from the boundary layer inside the
bulk of the fluid (the central nucleus). Here, we report a density behavior shown by water in convective

state.

PACS number(s): 47.27.Te

I. INTRODUCTION

In previous works we have described a general theory
of free convection in a cylinder for fluids submitted to a
horizontal thermal gradient [1-3]. In Refs. [1] and [2]
we have studied non-Boussinesq fluids having a monoton-
ic behavior of the density versus temperature. Experi-
mental data of temperature versus time obtained in our
laboratory were compared with theory only in Ref. [1] in
the case in which water is placed in a temperature range
not including 4°C where, as is known, it behaves as any
other fluid.

In Ref. [3] we have taken into account fluids having a
density maximum, such as water. Typical temperature
arrests were observed either on cooling or on warming of
the samples submitted to free convection. These arrests
were observed at temperatures quite symmetric with
respect to the density maximum and used to determine
this datum for heavy-water mixtures [4].

Other experiments on pure water were also performed
in narrower temperature ranges around the maximum to
study the large (20% ) asymmetries introduced in convec-
tion by the rather small (8 parts per million in the 0° to
8°C range) asymmetries in the density curve [5].

Here we shall show a comparison between a further de-
velopment of the theoretical solution of Ref. [3] and ex-
perimental data in the maximum-density region of water.

Such a comparison is carried out to provide complete
information about the density profile in space-time for
free convection in water confined in a cylindrical reser-
voir. In Sec. II we briefly describe an improved version
of the theory published in Ref. [3]. The comparison of
the theoretical solutions to experimental data and con-
clusive remarks are presented in Secs. III and IV, respec-
tively.

II. MATHEMATICAL TREATMENT

Before we describe and discuss the experiments, it is
useful to introduce the theoretical model of convection
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and give the main information about the results already
obtained with this model. Free convection at a wall hav-
ing a different temperature from the surrounding fluid is
usually described in terms of density gradients in the
gravity field. The fluid close to the wall starts its motion
shortly after a temperature difference is created between
the wall and the fluid itself. In fact, due to thermal con-
duction, a thin layer of the fluid is heated or cooled and
its density, if no anomalies are presented by this property,
becomes correspondingly lower or higher than the sur-
roundings.

Near a warmer wall, a fluid starts to move upwards,
while near a colder one, the motion is downward. The
thin layer moving at the wall is the well-known boundary
layer. If the fluid is contained in a hollow cylindrical cell
with its axis vertical and well-conducting lateral walls, in
order to maintain continuity in the fluid, the motion at
the walls must be counterbalanced by an opposite motion
on the axis. This gives rise to the so called “nucleus” in
the scheme of Fig. 1, observed and described by Mouton
and De Roeck [9].

In the Appendix of Ref. [3] we studied the case in
which water contained in a cylindrical vessel is initially at
rest and at a temperature T,. The lateral wall of the
cylinder is conductive and the top and bottom plates of
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FIG. 1. Model of convection in a fluid contained in a hollow
cylinder with conducting lateral walls. The arrows indicate the
fluid motion in the boundary layer and in the nucleus in the case
of initial higher density at the walls.
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the cell are insulating. The thermostat is at temperature
T,. This implies an approximately constant temperature
gradient across the boundary layer which is formed after
a few seconds of convection. We can then assume a
linear temperature distribution between the fluid and the
walls at initial time. To consider a temperature range in-
cluding the density maximum of water, we fit by a parab-
ola the initial density profile versus temperature [6].
More complex functions might be used in larger tempera-
ture ranges [7]. The choice of the state equation deter-
mines the initial (i.e., t =¢;) profile of density versus
space [3]. It will be the dynamics of the system to per-
turb the linear temperature distribution.

The values of T, and T are set, on the basis of experi-
mental evidence, at about 8°C and 0°C, respectively. In
fact, as already shown in previous papers [4,5,7], the typi-
cal temperature arrests in free-convection curves appear
only when a quite large temperature range including the
density maximum is considered.

As is well known, to have a well-formulated problem
from a mathematical point of view, it remains only to
specify the initial condition for the density [8]. Physical-
ly, this reflects the fact that the state of the wall can only
constrain the temperature and velocity of the fluid at the
wall, whereas the behavior of the density close to the wall
is entirely determined by the internal dynamics of the sys-
tem.

Once the boundary conditions are specified, the dy-
namics of the system is determined by solving the five hy-
drodynamic equations (continuity, Navier-Stokes, and
Fourier). However, to simplify the mathematical com-
plexity of the problem, we had to assume the convective
model of Fig. 1, which subdivides the fluid into two re-
gions: the boundary layer and the central nucleus. This
allowed us to apply two different mathematical methods
to solve these two problems [9,3].

Of course, these two regions are physically connected
and it is easy to show that they are mathematically relat-
ed by the continuity equation for velocity fluxes [2,3].
Let us now report the final results.

The temperature 7(z,z) on the vertical axis of the
cylinder is expressed as a function of the depth z and ¢,
starting from the initial temperature T:

T(z,t)=T,+AT , (1)
with
+{B; —4k(p(z,t)—p(T,)]/p(T,)}'?
ap— Bt Bi—4klplz,t) —p(T)]/p(T;)} 2
2k
and
p(z,t)=p(T,)+S , (3)
n=-+ oo
S(z,t)= 3 a,explinmz/h)exp[inx(z)], 4)

a,=(1/2h )fjhh[p(z,to )—p(T,)]exp(—inmz /h )dz ,
(5)

e s (6)
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Br and k are, respectively, the first and second
coefficients of the density p expansion with temperature,
and G is a function of x expressing the initial condition
for the temperature step. Moreover, s and § are, respec-
tively, the height of the cylinder and the thickness of the
boundary layer, and a is a dimensional constant which
depends on the transport coefficients. Note that Eq. (6)
provides variable x as a function of time in an implicit
form.
Of course, Eq. (4) can be rewritten as

n=+owo
S(z,t)= 3 a,exp|(inw/h) z+%x(t) J, (7)
or, by taking into account Eq. (5), as
S(z,t)=p z+%x(t),to —p(Ty) . (8)

In other words, function S coincides with the initial den-
sity profile but not calculated at point z but at point
z'=z+x(t)h /m. Physically, the density solution has the
same profile as the one it had at the initial time # =t but
deformed in space-time according to the law
z'=z+x(t)h/m. Thus, we see that the role played by
variable x is unusual since the phenomena examined here
is completely determined by the time evolution of x given
by Eq. (6). Briefly, both temperature T and density p are,
at any instant, only functions of variable x. Since x
shows properties connected with the time evolution of
the phenomenon and measures in some way the degree of
advancement towards equilibrium [2], we called it a
“clock function” [10]. Its general role in nonequilibrium
thermodynamics has been discussed elsewhere [10,11].

The velocity, pressure, and density profiles can be also
found by using the central-nucleus model [3]. However,
temperature measurements are simple and accurate.
Then, we prefer to test the validity of our theory pub-
lished in Ref. [3], comparing the experimental tempera-
ture data versus time to the theoretical profile.

III. COMPARISON WITH EXPERIMENTS

The apparatus consists of a copper cell (3.6 cm diame-
ter, 9.2 cm length) filled with water and surrounded by a
circulating thermostated fluid. At a given instant, by a
convenient valve switching, this fluid is suddenly replaced
by another fluid thermostated at a different temperature.
After this instant, free convection takes place within the
cell.

A thermocouple is placed along the z axis at 4.6 cm
from the bottom, i.e., at the center of the cylinder. The
electromotive force of the thermocouple is amplified,
detected, and recorded by a standard computer on-line
interface to provide temperature data accurate to 0.01 °C.
Each recorded datum is averaged over 100 points with a
period of about 0.2 s. A typical convection experiment
lasts about 400 s, so that it consists of approximately
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FIG. 2. Comparison between experimental data and theory
for free convection in water: , temperatures measured at
the center of a cylindrical cell (9.2 cm length, 3.8 cm diameter);
M, calculated values according to the general theory of a con-
vecting nucleus.

2000 data, or 200 000 points.

The experimental conditions, with reference to the re-
gion of interest, i.e., cooling curves between temperatures
including the density maximum, are the following:

(i) The initial temperature of the fluid is uniformly con-
stant, i.e., T(ty,z)=T, for all levels z; (ii) the tempera-
ture of the thermal bath is T, =0°C; and (iii) the continu-
um is initially at rest.

In Fig. 2 we report a comparison between the experi-
mental temperature data (solid line) and the theoretical
solution (dotted line). As can be seen, the main features
of anomalous convection in water are well reproduced by
our theory. We wish to point out the extreme sensitivity
of the temperature trends to the actual form of the densi-
ty field. This can also be explained theoretically by con-
sidering the equation which relates the temperature to
the density [3]. This equation is strongly dependent on
the initial density condition: Any small variations in the
slope of the initial density choice, even slightly different
from the parabolic one, induce large variations in temper-
ature.

Considering the technological limitations of laboratory
experiments [11], we have measured the density profile
directly using the temperature data. To this end, we have
assumed that: (i) the local-equilibrium hypothesis is valid
[12], and (ii) the density dependence on pressure is negli-
gible.

Assumption (i) is fully supported by molecular-
dynamics experiments on fluids confined in rectangular
boxes and submitted to temperature gradients [13]. As-
sumption (ii) comes from experimental pressure-volume-
temperature data for water [6]. Therefore, the density
profile in space-time is simply obtained by inserting the
experimental temperature versus time data into the fol-
lowing state equation:

p(z,0)=p(T){1—B[T(z,0)— T, 1 +k[T(z,t)—T,1}} . (9)

In Fig. 3(b) the results of such a calculation, carried out
on the data of Fig. 2, are shown. As can be seen, the ex-
perimental and the corresponding theoretical curves, re-
ported in Fig. 3(a), are in excellent agreement.

The great sensitivity of convection to very small varia-
tions in the density distribution in the fluid is confirmed.
In fact, the flat-top form of Fig. 3 modifies this distribu-
tion by about 15 ppm only. Without introducing this
quite small density change, no temperature arrest is pre-
dicted by theory. As seen in Fig. 2, the temperature
arrest perturbs the monotonic form of a cooling curve by
more than 30%. Thus, even a slight variation of 1 ppm
in the density profile would produce an appreciable
modification in the temperature versus time dependence.

As a consequence, the peculiar form of the density
profile shown in Fig. 3 suggests the following physical in-
terpretation: The static density profile is perturbed by a
few parts per million due to the motion of the fluid.
Thus, just after the onset of convection, the cuspidated
density distribution is created within the liquid near the
walls in place of the parabolic one. According to our
theory, this slightly perturbed boundary-layer density
profile propagates into the nucleus modifying its shape in
space-time and giving rise to the observed temperature
arrest. Detailed calculations with other experimental
curves will be presented elsewhere.

IV. CONCLUSIONS

We have shown, in a typical case of anomalous convec-
tion in water near its density maximum, the substantial
validity of our previously published theory. By combin-
ing the experimental data with theoretical considerations,
we have been able to measure and interpret the convec-
tive anomalies of water. The temperature arrests are de-
scribed in terms of very slightly perturbed density profiles
(about 15 ppm) generated in the boundary layer of water
in a convective state. In our opinion, these small density
variations revealed by experiments, and confirmed by
theory, should be very difficult to detect using other tech-
niques. We hope that the introduction of variable x (),
presented in Ref. [3], may be useful in approaching other
complicated hydrodynamic problems.
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